The generator matrix

 1  0  0  1  1  1  0 X^2 X^2 X^2  1  1  1  1 X^2+X  X  1  1  X  1  1  1  1 X^2+X  1  1  X X^2 X^2+X  1  1 X^2+X  1  1  0  1  0  1  1  X  1  X  1  1  1 X^2+X  1  0 X^2+X  1  1  1  X  1  1  0 X^2  1  0  1  1  1 X^2  1  X  X  1  1 X^2  0 X^2+X  X  0 X^2  X  0  1  X  1  0  X  1 X^2+X  1 X^2+X  0  1 X^2 X^2+X  1 X^2 X^2  X  1  0  1  X
 0  1  0  0 X^2+1 X^2+1  1  X  1  1 X^2 X^2 X^2+1 X^2+1  0 X^2+X X^2+X X^2+X+1  1 X^2 X^2  1 X+1 X^2  1  X  1  1  1 X^2+1  X  1 X^2+X+1 X+1  1 X^2+X  X X^2+1 X+1  1  0  1 X^2+X+1 X^2  X  1  X  1  1 X+1  0  0  1  X X^2+X X^2+X  1 X+1 X^2  0  X X^2  1  X  X  1 X^2+X+1 X+1  1  1  1  0 X^2  1  X  1  X  0 X^2+X  1  1  1  1  1  1  1 X+1  1  1  1 X^2 X^2  1  1 X^2+X X^2+X+1 X^2
 0  0  1 X+1 X^2+X+1 X^2 X^2+X+1  1  X  1  X X^2+1  1 X^2+X  1  1 X^2+X  0 X^2+X X^2+X+1 X^2 X+1  0  1 X^2+1 X+1  1  1  0 X^2 X^2+1 X^2  X X^2+X+1  X  1  1  X X^2+X  1  X X^2+X X+1  1 X^2 X^2+1 X^2 X^2 X^2+X+1 X^2+1 X+1  0 X^2+X+1 X^2+X X^2+X+1  1 X^2+X+1 X^2+1  1 X^2+1 X^2+X+1 X^2+X X^2+1 X^2+X  1 X^2+X+1  1 X+1 X+1 X^2+X+1  1  X  1 X^2+1  1 X^2+X X^2+X+1  1  0  0 X+1  0 X^2+X+1  X X^2+1  1  0  X  X  1  1  1 X+1 X^2+X+1  1 X^2  1
 0  0  0 X^2 X^2  0 X^2 X^2 X^2  0 X^2  0  0 X^2  0 X^2  0 X^2  0  0 X^2  0  0 X^2 X^2 X^2  0 X^2 X^2 X^2 X^2  0  0  0  0  0  0  0 X^2 X^2 X^2 X^2 X^2 X^2  0  0 X^2 X^2 X^2  0  0 X^2  0  0 X^2 X^2  0 X^2  0  0  0  0  0 X^2  0 X^2  0 X^2 X^2  0 X^2 X^2 X^2 X^2 X^2 X^2 X^2  0  0 X^2  0  0  0 X^2 X^2  0 X^2  0 X^2  0  0 X^2 X^2  0  0 X^2  0

generates a code of length 97 over Z2[X]/(X^3) who�s minimum homogenous weight is 93.

Homogenous weight enumerator: w(x)=1x^0+164x^93+99x^94+200x^95+45x^96+184x^97+61x^98+76x^99+8x^100+76x^101+15x^102+28x^103+6x^104+12x^105+15x^106+12x^107+8x^109+2x^110+4x^111+2x^112+4x^113+2x^120

The gray image is a linear code over GF(2) with n=388, k=10 and d=186.
This code was found by Heurico 1.16 in 0.656 seconds.